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Thls paper deals with the methods of constructing an approximate theory of
thin elastic plates without using the assumptions of the type of Kirchhoff's
hypotheslis., Untll recently, the only method of solution of this problem
was one based on the application of power serles or series arranged 1n Legen-
dre polynomlals, Lately, however, some papers have appeared in which the
same purpose 1s achleved by means of asymptotlic integration of the equations
of the theory of elasticity. In the present study the propertles of these
methods are dlscussed and the equations, which arise in the application of
the asymptotic method to the problem of general deformation of a thin plate
whose middle plane 1s referred to an arbitrary orthogonal system of curvi-
linear coordilnates, are derilved.

l., We refer the middle plane of a plate to an orthogonal system of cur-
vilinear coordinates o , B and assume that the y-coordinate 1s perpendi-
cular to the middle plane. Then the differentlal equations of the three-
dimensional problem of the theory of elasticity will have the form

81 Hg alnH
e | H, ;"+ e Hy LB (64a —pp) — 2Hp —2Gap =0 @B
ds,, dlnHg 81nHa _
H, aa +HB 3 + 3T —HGTGOLY——HBTGBY_O
dlnH,
(H -——HB nB up)=6u——V(Ges+6w) (aB)
E ‘(’E/"‘V: Gyy — V (Oaa + UBB) (11)
61 H dlnH,
E(H o2 Hy et BT w4 Ho ) = 2449 5
3 ] B
(B (,T)= 204 V)0 )
Here Oqqr Oups Tays 9pp Tpyr Ty are components of the stress tensor,

Uy ug, W are components of the displacement vector, ‘H,, IIﬁ are Lamé's
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parameters, x , y are, respectively, the modulus of elasticity and Pois-
son's ratio. The symbol (aB) here and in what follows indicates that there
exists the second relation which 1s obtained from the given one by the inter-
change of the 1lndices g and g .

Assuming that the plate 1is loaded in an arbitrary manner on the upper and
the lower plane,we have the conditions on the surfaces vy =th

O = a (@, B), 0o = k¢, (a,B) (aB) for Y=~

Ow=b(@,P), Cauy=h. (@ B) p for Y=—0
The conditlons on the side surfaces of the plate will be formulated later.

1.2)

The state of stress of the plate can be represented as a sum of the sym-
metric and the skew-symmetric states of stress.

The symmetric state of stress 1s defined as one satisfylng the conditions
— 1 13-
Ovw =359 @, B), Ouy= ?tTh 90 (@, B)  (ep) for y=H4h (1.3)
and such that

Caay Tafy, Opsy Oyy, Uq, Up are even functions,
Gayy, OBy, W are odd functions (1-4)
with respect to vy
The skew-symmetric state of stress 1s defined as one satlsfying the con-
ditions 1 1 '
Oy = 5P @ B), Ou= i‘h— « (@, ) (ap) for Y=Fh (1.5)
and such that

Ogy, Opy, W are even functions,
Oxay Oupy Opg, Oyy, Ua, Up 8re odd functions (1.6)
with respect to vy .
It is assumed that
p=a—b g=a+b gu=~¢Ca—ds (B, Pe=2Cet da (ap

The skew-symmetric state of stress corresponds to bending of the plate,
in which p 1s the intensity of the surface load, P,» Pg are the intensi-
ties of the surface moments; the symmetric state of stress corresponds to
the state of generalized plane stress in which ¢,, ¢g are the intensities
of loads parallel to the middle plane, and alsc to the state of compressilon
of the plate in which ¢ is the intensity of the compression load.

2. Let us write down the solutlon of the system (1.1) in the form

S 8 S
6ij = U B0, wp=RTUY Rus, W =hrTY W (2.1)
3=0 8=0 8=0
(i:d, BvT; i=av B’ T k=a7 B)
(where ¢ are integers, which ar: different for different stresses and dis-
placements) and let us construct the iteration processes for the succesaive
determination of coefficients of the above expansions.

The first of these iteration processes conslsts in the followlng: a sub-
stitution of variables is made in (1.1)



Derivation of equationa in the theory of thin plates 153

Y = h{ (2.2)
the expansions \2.1) are then introduced into the obtained system, in which
¢ 18 selected as follows:

for the symmetric problem

g=2 o Saas Sapr Opps g=1 for' Sgys Spy
=0 for 5, 9=2 for ug up g=1 for W (2.3)
for the skew-symmetric problem

g=2 for Saar Sapr Sppr g=1 for Sayr Opy
g=0 for Oy g=2 for Uy, ®p. 7=3 for W (2.4)

and in each equation thus obtalned the coefficients of all powers of n are

set equal to zero, starting with the lowest, This leads to the following

sequences of systems of equations for the coefficlents of the expansion (2.1)
(aB)

35 ® ds,, (S) dc (&) 61nH nH,
B
e e P g, TR (6,0 — o) — 28, T e 0 = 0
a5, (8) ds, (3) agyfr’) olnH 0lnH,
B
Hy—5 + Ho o5+ ¢ — Ha =000 — Ho —g= 00 = 0 (2.5)
du (8) dlnH
E (Ha 60; — Hg a3 - uB(S)) = cag) - V(cﬂg) + Gvfr’—m) (=f)
owe)

T = o (0, + o)
dug® ou,® dlnHy

nH
E(He 55 + Hp 55+ He—5; "B”+HB Ba““('))=2(1'+v)°“(“"

owio ou,®

E (Ha e —63-) —2(14+v)o D

Here 8 1is the number of & term in the expansion, and the numbers a4, ?
and o are related to & as follows:

a=8—2, b=s, ¢=5—2 for the symmetric problem (2.8)

=8s—4, b=5—2, ¢=9 for the skew-symmetric problem (2.7)

In (2.5) and everywhere in what follows the quantities with negative indi-
ces are assumed to be equal to zero.

In Equations (2.5), (2.6) and (2.7) the integration with respect to the
variable ( 1s easlly carried out. The result obtalned can be written down
as: for the symmetric problem

WO = ® + W'®, u,® = 1,0 + u*® (@B
6,8 =T, + 0L (ap), 3.8 = Tof) + 05" (2.8)
ca(:) — Cfa(\,') + 6;(,:) (@p), o, (a) = S (a) + gz., @ s, o(a)
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for the skew-=symmetric problem

W . I/V.(S), u," = gva(s) - ua‘(s) (ap)

) == s «(s)
01(: - CTotfz) + O sn

(2B} S5 = L, + o (2.9)
s s(s)
ool = 85 4+ By + o @, o) = U8 + P 4 of

In these formulas the functions of g and g

(s) 8 (
w(s)’ 01(8)7 vﬁ(s)’ Taa ‘L’ag), TBBS)' Ta((s), 17[;«({ )9TY<'$)7 Sa(YS): SB(:), SY(Y&)
are connected by differential relations whilch have the form
for the symmetric problem
(3) ) E (8) ) __ (9 «
Taa = 1_ VZ Ta.a (xB), Tap = 2(1 _’_'.—‘v) Taﬁ s Tavy Ta*{ (aB) (2.10)
() _ (s)
1”"{’Y - TYY ’

Ew® = —v (1,9 + 148)
for the skew-symmetric problem
r 1
Tafzs) =TT Ty o (afl), Ta(QS) = m Tag), Ta(ys) E“Tow (2B)
2.11)
1 a (s) . ( .
TY$> = 3_ T‘I'Sf)i Ua - H e (2B)
as ‘¥ 85,49 dlnH dnH
(s) ay By g g8 (s)
Sl = [H ga— T He g — Ho— Sax’ — Hp —0- 2 Sy

In Formulas (2.10) and (2.11)

, (8} {
7.9~ H, az{; _HﬁaﬂgBHa vs® - v, dvgle) —vH 3 ln'HBv )
a

—F (aB)
B R *
Ta§38) 6uB + Hg o, + H. 6lnHB 58 —-I—HgalnH“v (s)

(2.12)
at k) an;p dInHg,_ (s ) H 10 He (6
Tu(:)- Ha aa —_HB o +H’1 5 (171 TBB)+2 B aB aﬁ «fB)
¢ dlnH dlnH,
TY(YS) = - Ha aTaY "'"‘H arﬂ + Ha - A Ta(:) + Hﬁ TB(S)
o a3 aa

a3

The quantities marked by asterisks in (2.8) and (2.9) are defined by the
following relations:

for the symetric problem

& (s~ 2.13)
Euy *& = \ [EH aW ——2 (1 +v) %(f'”] g @h (
OE du,"® dInH dug®
0 = 41— [Ha s —He—53 u,*® 4 vHp 6B —

dlnH
—vH, da S Ila* (s)} (aB)
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2.13 (cont.)

Bu," 9 du, e olnH élnH
£ [H B e b H, T Eu e  Hy S tu, )
¢4

afb 2 (4 v) da + Hp a8 + a5 a8
5,10 = _i [Ha 665—?8) + Hg%i)—HaalnHﬁ( 5O g 2 0) —
0
— 2H, aI;BH“ ca?a‘s’] ;@
st i [Ha gsé%(s_) L, acggw .l 13;15 o, 9 lnBH 692‘”} it

g
EW =\ 10,8 — v (05 + 03] dt
0

for the skew-symmetric problem

4
Ewn(l) =1 S [G‘Y(S 4) V(Ga(:—Z) 4- Gﬁés“ﬂ)] dzg (214)
0
4 4
Eu,® = —E\ wiePd e
0
ou_*® dlnH dug*®
(s) E a _ T (s) e
Saa —T,:,_Z[Ha_—aa Hyg a3 Up  + vHp a8

dlnH
—vH, o 8 ua'(s)] + = oYf,s -2 (aB)

e e v e + s+ s e & & a2 s+ e s s e e s = s+ v s e x s o s g

(the expressions for oayﬂ, caJ”, GYf” are not written down; they are the

same for the skew~symmetric problem as for the symmetric).

Formulas (2.13) and (2.14) are of recurrent character and allow the deter-
mination of quantities with asterisks assoclated with the approximation (g),
without solving any equations, 1f all the quantities associated with the
approximations (0), (1), (2), ... (8 — 1) are known.

3. We will assume that the functions a, b, ¢4, cp, dy, dz in (1.2) are
independent of h . (A generalization for the case in which these quantities
are polynomials of integral or fractional powers of A 1is made in an obvious
manner, with the help of the superposition principle). With this assumption,
the boundary conditions (1.3) snd (1.5) imposed on stresses can be replaced
by sequences of conditions imposed on the coefficlents of the expansions

(2.1)
for the symmetric case

{ . 1
GY‘(YO) == 2 q, GaYO) = t';— 9y gﬁgf()) = i’? q;
for L=+1  (3.1)
oy = ooy = og’ = 0 (t>0)
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for the skew-symmetric case

(O)AA 1 (0)
ot b Gl =Py O =Py 3.2)

o = 0 = o = 0 (£ >0)

Substituting (2.8) and (2.9) into (3.1) and (3.2) and bearing in mind that
for 8 = 0 and 8 = 1 the quantities marked by asterisks are equal to zero,
which follows from (2.13) and (2.1%), we obtain

for the aymmetric problem

W =Lg©® @ SO+ T =54 3-3)
where
q(O) = ¢, q(l) = 0, q(r) = e 20'7:{(7') l('—-—l (l'>i)
qam) = Gy qa(l) =0, qa(r) - 2G¢Y.(r) l(—‘-——l (@h)
r>1 (3.9)
for the skew-symmertic problem
(s) + T - 1/2pa(8) (@B), SYS,S) 1 TYS{S) — 1/zp(‘) (3.5)
where
p® == p, pw = 0, p = — 20,5 |
(r>1
p@=p, pO=0  pN=—20."_ B (3.6)

Equalities (2.10), (2.12) and (3.3) from a system of ten equations with
the unknowns

(5) (s) (8) -
Z'a(S)y 178(3)» w(S), Taf:), Ta;f)’ TBg)’ Tasrs)v Tarey Tyy s S (37)

By means of the last two equalities (2.10), (2.12) and equalities (3.3)
and (3.4) the quantities
Ta((S)’ TB$): T‘{i'S)y S'('(rS) (38)
are expressed in terms of

9 9o T 930y G P Gt @l

(s

and the quantity w'® 1s expressed in terms of T,. and Tgf or in terms
of 7, and 3!® which follows from (2.10), (2.12).

Substituting values thus obtained (3.8) into the first three equalities
(2.10) and (2.12), we arrive at a system of five equations with the unknowns

" ( (s
7.8, LB(;) Tas )’ Ta;‘l’)y TﬁB)

olnH

ar & Tl dlnH
3 4 HB ‘5 —H, B (Ta(s) TB(I)) _ 2HB 3 (l) _ ______q (s)
(af)
v dlnH, vg'® dnH
Tay‘ T_‘ﬁ—‘ﬁ [Hu 'B'a;l_ - HB 33 I’B(') + VHB - VHu 3a £ vd(‘) (3'9)
()

(s) E . 9ug'? v, dn H, dlmH,
Fap 2(i+v)[”" 9a- T Ho 75~ + Ha—55— v + Hp —g—va®
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For each (8) this system ie equivalent to the nonhomogeneous system of
differential equations of the generalized plane stress problem.

The first equality (3.9) represents the equilibrium equations and the last
two are the relations of elasticity. The constant terms on the right=hand
sides of the equilibrium equations can be looked upon as components ?5 a cer-

tain hypothetical tangential loading. For & = O the quantities gq, and
un) co&ycide(ﬁithoﬁhe components 9o, 93¢ of the load actually applled; for
q = =

8 = 1 q and for & > 1 these quantitles are defined as cer-
tain df}rerenéaal operators of ¢u» 9s. In particular, it is easlly verified
that if dq 93 have a potential function V{®, then the potential function
v@ for ¢,® ¢, 1s given by Formula

4 — 3v .
=12 =9 AV® ( A is the Laplace operator) (3.10)

For the skew-symmetric problem Equations (2,11), (2.12) and (3.5) form a
system of twelve equations with the unknowns

(
va(s)’ vB(.)y w(s)7 Tas':)’ Taﬂa): Tﬁg)’ Taf:), TB$)1 TY(YS)r S (B) SB‘(Y‘)r S‘Y(Y.) (3‘11)

ay

By means of the last two equations (2.11) and equalities (2.12), (3.5),
(3.6) the quantities

(8) (8) s 8
SEY ’ SBY ’ SY(Y)i TYg) (3'12)
can be expressed in terms of
w0, ¥, T Py Pas Py 03 ko 053 ko 079 ko

and 2,/ and v in terms of w),

Substituting these results into the first four equalitles (2.11) we obtaln
a system of six equations with the unknowns

(3) (8) (s) (8) (8) (8)

Tan s Tap » B8 s Tay s Toy » W (3.13)
It has the form
+ vH, %(HB %‘—’) — vH, il—:.,‘;}ﬁ’fl%”;—)] @)
) = — i | e i (He %) + Ho 2 (. 20)+
15 4 % 25T — ) — 2y ) = — 2l
H, a’;f) + Hp a;ﬁ‘a) —H, 31%;‘5 ) — Hy2 h,;;[ 21 =

3 (1 o () L(B%_")]
=T{p()+H¢Hp[-5a—(I—1; + 28\, }

This system 1s equivalent to the system of differential equations of the
classical theory of plate bending. Namely, if the following new quantities
are introduced by means of Formulas
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A+i

M (o) = % R, 4 RS \ L0 @dt (am)
R
,F..I
2= 2w+ dog .49
21
#'—il
N O = p? [wérgf’ + 2,9 + \ Toy @ d{;] (af)

the first five quantities in (3.13) are expressed in terms of M %, M,
%ﬁ", w NB‘S and substituted into equations (3.14), then we obtain the
usua) relations of the plate bending theory in which the quantities (3.%;
take the role of moments and shearing forces in the sth approximation

It has been shown in [2] (for the cylindrical coordinate system), that
al} of these quantitles can be expressed.in terms of the function
we'™ = h* % which satisfies Equation

® ‘ 2Eh3

AAw ® =P D— 3.16
"o D (P=3 - v“’)) ®.46)

Here P(*) 1s expressed in terms of p, p,, ps. In particular

PO=p 4+ HH i(f&) _"_(ﬁé) , PW=9
P+ HeHg | o a, + ®\7, (3.47)
PO {36 - . L)+ a2 ()]}

R — (B —3v) Ap+ (4+v) A HH, L = +HHy 7
Por p, = pp= 0 we have

PO =p pW =g, p@=_ B3 ,, (3.18)

100 —v)

Note . It can be seen from Pormulas (3.10), (3.17), (3.18), (3.4),
(3.6), (2.13) and (2.14) that in the ocomstruction of an approximate theory
of bending and extension of a plate it is required that the surface loads
have continuous derivatives of suffisiently high order. It should be pointed
out that the requirement of differentiadility of load is not a shortcoming
of the method under oconsideration, but a reflection of the physical nature
of the problem., This can easily be verified with the example of bending of
& c¢ircular plate referred to polar coordinates and acted upon by a mormsl
load of intensity P = P, cos np

At the center of the plate the function p becomes nondifferentiable and
the method discussed here cannot be applied. This 1s explained by the fact
that at the plate center in this case the state of stress is essentially
three-dimensional and no theory bssed on the assumption of small plate thick-
ness is capable of describing it.

4, In [1] the iteration process presented above was termed basic. It is
designed for the construction of the basic states of stress, deeply penetra-
ting inside the plate. Therefore, in the formulation of Equations (2.5) 1t
was assumed that the stresses and displacements do not vary too rapidly along
a, B, and the fact that in a thin plste the stresses and displacements must
vary rapidly with was taken into consideration by means of the substitu-
tion of variables (E.a).

*) In [1], for the problem of bending of a plate, the substitution (3.15)
was carried out in Cartesian coordinates,and quantities with asterisks were
erroneously left out of &ccount.
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Formulas {2.8), (2.9), (2.13), (2.1%) show that the basic iteration pro-
cess determines such states of stress of the plate in which the stresses and
displacements with respect to the variable ( , i.e. along the thickness,
vary according to a polynomial law, the degree of the polynomlals increasing
unboundedly with the increase of the number of approximations. As the number
of approximations increases without limits, the states of stress will be
obtained, in which stresses and displacements are expressed by power serles
in ¢ . Therefore, using a sufficient number of approximations and taking
advantage of the arbitrary constants of integration of equations (3.9) and
(3.14), one can formally satisfy the boundary conditions é6n the side surfaces
of the plate wlth any degree of accuracy.

Thls constitutes one of the possible ways of constructing an approximate
theory of plates; 1t represents one of the variants of the power serles
method, 1.e. a method which has been used repeatedly (§ee, for instance,

[3 to 6], and which 1s based on the expansion of the unknown quantities into
power series in the direction of the plate thickness. This method can be
applied for any thickness of the plate (including the large one), although
1t should be noted that the difficultles assoclated with the investigation
of the character of convergence of corresponding serles have do far not been
overcome. However, 1f one speaks of thin plates only, the power series
method has a drawback the nature of which will become apparent below.

From the above discussion it follows that for the equations of the theory
of elasticity the process of constructing integrals which are expressed in
terms of power serles 1n one of the variables can be arranged in such a man~
ner that it will have iterational character, and, at all stages, quantitles
of the same order of magnitude (and independent of A ) will be taken into
account., This offers obvious advantages, especlally 1f one bears in mind
that at each stage the well known equations of the problems of plate bending
and generalized plane stress have to be integrated. However, all these
advantages are almost completely lost when the boundary conditions on the
side surfaces of the plate have to be satisfled: to carry that operation
out one has to construct a certain number of approximations in a general
form, write down the corresponding expressions for stresses or displacements,
and state the requirement that those quantitles should, in one sense or
another, approximately satisfy the boundary conditlons. Thus, in the variant
of the power series method discussed here the arbiltrary constants of inte-
gration have to be determined at once, and not separately for each approxi-
mation, and besides, the computations will now contain quantitles proportional
to various powers of n . In other varlants of the power series method its
shortcomings remain essentially the same and are manifested by the fact that
with the increase of the number of approximations the order of the corres-
ponding equations increases, the coefficients of the equations depend on h,
and for small values of #. are substantially different from each other in
absolute value. :

The property of the power serles method described above 1s not accidental
and cannot be explailned by an unfortunate arrangement of the calculations.
In the classical plate theory only such characteristics of edge force action
as tractions and moments are taken into consideration for the fulfillment of
boundary conditions on the side surfaces, The improved accuracy in satisfy-
ing the boundary conditions is equivalent to taking into account the self-
equilibrated edge influences (polymoments), and this, according to St.Venant's
principle, leads to the appearance of rapldly damped states of stress near
the edges.

If the equations of an approximate plate theory are found with sufficlent
accuracy and have the purpose of describing all the elastic phenomena, they
must contain the corresponding rapidly damped integrals which are known in
the theory of asymptotic integration as the boundary layer [7 and 8]. Such
integrals are precisely the ones which have equations obtained by the power
series method, i.e. equations of sufficiently high order whose coefficients
contain a small parameter.

The above considerations naturally lead to the idea of devoting a sepa-
rate investigation to rapidly damped states of stress and working out for them
such iteration processes which are better adapted for the purpose than the
basic iteration process. The method in which this 1dea 1s developed was
considered in [1] and [9 to 15] and can be called asymptotic., In the present
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study an auxiliary iteration process 1s formulated for the determination o~f
rapidly damped states of stress in a plate subjected to bending and exten-
sion, and 1t is shown that 1if the state of stress in a plate 1s sought as a
sum of states of stress which are obtalned by means of the basic and the
auxlliary processes, then not only the process of integration of equations,
but also the process of imposing the boundary conditions on the side surfaces
will have the iterational character,

Lately some papers have appeared [16 and 17] in which the approximate ben-
ding theory of plates is constructed by means of the symbolic method of Lur'e
[18]). In this method equations of infinitely high order are obtained, and
in that sense 1t borders on the power serles method. It has been shown in
[16] that the results arrived at by thls method are quite close to those
obtained by the asymptotic method.

N ot e . The differential equations which arilse in the power serles
method can be solved by asymptotic integration as equations containing a
small parameter. In the process, the rapidly damped solutions are automa-
tically singled out, and the difference between the asymptotic method and
that of the power series becomes inessential., Then the equations arising in
the power series method loose their independent signifilcance #nd turn into
an auxiliary means for obtalning results to which the asymptotic method leads
directly.

8, Let us now describe the auxiliary iteration process, assuming that it
is to be used in constructirig states of stress rapidly damped in the direc-

tion away from the line
Q = Q,

which 1s supposed to coincide with the edge of the plate.

This process consists in the following: in (1.1) we make & substitution
of variables 9 3 _
— p1 A o S 5.1
Ha s aa h™ 6{ ! Y h ot ( )
and introduce the expansions (2.1) into the transformed system, choosing ¢
such that = r

for Suu: Sapr Oppr Fayr IByr Syy
q = J e— 1 for ua, uB, W (5.2)
{(r 1s an undetermined number, so far), then we set the coefficients at all

powers of h equal to zero, starting with the lowest one. This leads to
the following sequence of equations for the coefflcients of expansion (2.1):

(s
83,8 aopl

(8~1)
BE 6; = }2
(8) . ou -V
'%%——2(1+v)5ag)—_z——EHB o Bl (5.3)
ou,'® (8-1)
EZ8 —2(1 +v)ol = — EHp LA
aca(:) 8512'8) (8-1) 36 (') as (a) (s-1)
=t =R Ak (5.4)
u® () ,
E ———':;g = [0 — v (o + 3¢ lza—————Wg = [0,,“’ — v (0.2 + ogf]
I ais u,®
E(‘l‘gg--{-%-) 2(1+v)a“’ 0
-1)
o8l — v (09 + oyl = BHa 28 4 B,

B



Derivation of equations in the theory of thin plates 161

The designations used in Equations (5.3) and (5.4) are

acgdgﬂ)
B¢ = — Hy—5z— — kg (335" — o) (5:5)
(s~1) (8-1)
s as
(- =H, _BY (1) (s-1) _. 88 (s-1
R P 2@ kgsl7h, RE™ = —Hy —55— 2ko gV
also taken into account are formulas for the curvatures of the coordinate
lines dln H, d1ln Hy
ko = Hp—55— ko= —Ha—pg

Moreover, it has been assumed that k, =0. The latter assumption means that,
for the purpose of constructing repidly damped states of stress, the coordinate
system qa,B,y 1in which the basic state cf stress was constructed has been
replaced by a new coordinate system €,g,{ in which the Z-lines arestraight.
The ¢,8,{ coordinate system should be used only near the edge a=aq,.

This is possible, in general, but 1t should be pointed out that the edge
corner points (whether rounded off or not) should be excluded from conside-
ration. ’

Equations (5.3; and (5.4) from a reccurence system. From it, quantities
with the index (&) are successively determined in terms of quantities with
the index (8 — 1). For & = O, when (8 — 1) quantities vanish, the homoge-
neous equations well lknown in the theory of elasticity are obtained. Equa-
litles (5.3) represent the equatlons of torsion of bars (with respect to
g-axis), and equalities {5.4) are the equations of the plane strain problem
(in the %C plane). For & > O (when (g — 1) quantities should be regarded
as known) the equations remain the same, but become nonhomogeneous,

In what follows 1t will be convenlent to represent the coefficlents of
the expansions (2.1) in the form
8) — 4.(8) (8) ) — , (8 (8) (8) — (s (8
o =0y + oy W = ulQ) Yy WO =W+ W
Gi=oB 71 k=a,p)
defining the quantities with the additional indices (1) and (2) 1in the fol-
lowing way:
in the zero approximation
0 G O@® 0 g0 0 0) —
Taa') = Tpp (1) = Tav () = Ovy () = Yany = Wqy =0 (5.6)

0) (0) {0}
(1] 11 , u are defined from the homogeneous
«B (1) By Q) B ) system (5.3)

—_ 0 — 0) ——
"ag’)(s) = "33 )(z> = “B((a) =0 (5.7

(0) (0
Oaa (2)0 Tpp )(2)' °a($ 2y 51(3)(2)’ “a(%), W(z‘)o) are determined from the homogeneous
system (5.4).

In the ath approximation (s > O) the quantities with additional indices
(1) and (2) must satisfy the nonhomogeneous system (5.32, 5.4) in which the
quantities on the right-hand sides have indices (1) or (2), respectively.

Note . Quantities with additional indices (1) and (2) correspond to
those which in [1] were determined by means of the first and second varlants
of vne auxiliary iteration process.

We will require that solutions of the systems (5.3) and (5.%) satiffy
the conditions

) __ . (8 ) 3.
6a! = Gathy + Oa¥imy = 0 (@B for L 41 (0.8)
or =
(&) _ . (8) (8)
071. = <s*n"(l) + Oyv i) = 0
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Then for the state of stress which represents a sum of the states of stress
determined by the basic and the auxiliary iteration processes, conditions
(1.3) or (1.5) will be satidfied.

In the formulation of the auxiliary iteration process the substitution of
varlables (5.1) was used and 1t was assumed that the variation of stresses
and displacements along £,B,{ 18 not too large. This 1s equivalent to the
assumption that along o and y stresses and displacements do have large
variation. Following the way outlined in S8ection U4, care should be taken to
insure that rapid variability along o would imply rapid damping of the
unknown quantities, l1.e. conditlons of damping should be imposed.

Considering thils problem, we assume that the variable £ 1s determined
from (5.1) by Formula

Then the edge a = q, will be defined by Equation £ = O , and Equations
(5.3) and (5.4) will have to be integrated in the half-strip

0>¢> o0, —1<I<+1 (5.9)

As pointed out above, here the systems (5.3) and (5.4) have a definite
pgyslcal meaning: they represent the nonhomogeneous equations of the prob-
lems of torsion and plane strain.

Conditions (5.8), 1.e. stress-free conditions must be satisfied on the
stralght lines ¢ + 1 . For the damped solutions when ¢ = — » the stresses
and displacements vanish. Thus, the half-strip (5.9) will be acted upon only
by

a) edge forces

lo &, + a0,

( (s) (s) (s) 5.1
woime 080 F o Shlisy 040 Ol O-10)

distributed along the straight line ¢ = O ;

E=x

b} mass forces whose components R:, R, ]?t are determined from
Formulas (5.5).

For 8 = 0 components of forces (5.5) will vanish and, due to St.Venant's
principle, condltions of damping will be the requirements of equillibrium of
forces (5.10), i1.e. i1f (5.6} and (5.7) are taken into account, this will
furnish the equalitiles

1 +1
& 50,0, lamodS = 0, &a“m;,_o dg =0 (5.11)
—~1 ~1
"I -1
\ 5y @€ =00 Lo @ ar= o (5.12)

~1 -1

Suppose, furthermore, that there exist (8 — 1) approximations, determined
from Equations (5.3) and (5.4), which satisfy the conditions of damping.
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Then I?S‘”,I??‘lh 1?3'1’ will not vanish, but the corresponding load will be
localized in a narrow zone adjacent to the straight line g =0,

The conditions of exlstence of damped solutions for the &th approximation
wilI be the requirements

+1 0 +1

g g [Gaf()l) + Ga(;()z)]E:o df = g dg& [ZR:s-D — ERC(S‘I)] dt

! S (5.13)
+1 (') ":1
S [0Sy + 0.8y e dE = & dg& R0 dl
+1 0 1
S (0,8 + 0,50%],dC = &dg g R.-1dC
A >0 (5.14)
g [Gag()l) + O'ag()a)]E::o dt = g dgx R0 d{

which express the state of equilibrium of mass and edge forces acting upon
the half-strip.

For the symmetric problem, due to (1.%) equalities (5.11) and (5.13)
become identities, so that (5.12)and (5.14) will serve as the conditlons of
dampling.

For the skew-symmetric problem equalities (5.11) and (5.13) serve as con-
ditions of damping, while (5.12) and (5.1%) become identities.

6. We now turn to the question of procedure in the fulfillment of bound-
ary conditions on the side surfaces of the plate in terms of arbltrary con-
stants of the basic and the auxiliary iteration processes. For the sake of
concreteness let us consider the following three variants of the boundary
conditions for o =a, (2 = O)

Gaa = 0, Gap = 0, Gay = 0 6.1)
Gga = 0, Oap = 0, W=20 (6.2)
uq = 0, ug =10, W=20 (6.3)

(they correspond to the free, hinge supported and rigidly built-in edges,
respectively) and let us fulfill them, assuming that the total state of
stress 18 composed of the basic state of stress determined by the basic 1te-
ration process, and of the boundary state of stress determined by the auxili-
ary iteration process. Let

S S
Guu = W7 B0 17 A (08, + o)
8=0 8=0 6 4)
q S s (8) 4z = s ) (s) ( :
— - s
Oap = K70 3 WOap” + 3 B (0,00 + Tafity)
§=0

$=0
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(6.4)
cont.

S S
W =13 WY = %S 8 (W + W)

8==() 8==0
By ¢, we understand here the volumes of ¢ determined by Formulas (2.3)
and (2.4), which correspond to the basic iteration process, and by ga — the

values of g determined by Pormulas {5.2) which correspond to the auxiliary
iteration proceas,

The number r remains undefined in Formulas (5.2). It should be so
chosen that the procedure of imposing the boundary conditions would have
recurrent character. For all three forms of boundary conditions considered,
(6.1) through (6.3), this purpose 1s achieved AIf we set r = 2 ., Then, sub-
stituting (6.4) into (6.1) through (6.3) and setting the coefficlents at all
powers of K on the left-hand sides of resulting equalities equal to zero,
we obtain the sequences of boundary conditions for the coefficients of expan-
sions (6.4).

Por a =qa, (2 = 0O) they are written down as

. — (ﬂ
oac(:) + cat(t‘()l) + Qa«(:()z) 0 %, + Ga (1) + 0.‘13(2) 0

0 8V +06 8+ ol =0 (6.5)

av(z)
6, + s, “ , + Uaa('-’) 0, s.8 + o, u) + °a9ﬂ) 0
W(') + W( (a) + W( (a) __ 0 (66)

- -1) — ~1 (8-1) —
U 5 G = 0, ug o e+ ugl) = 0

W+ W + W =0 6.7

where @ = 8~ 2 for t.e skew-symmetric problem, and ¢ = 8 for the sym-
metric problem.

1~ boundary relations (6.5) throuwgh (6.7) contain quantities designated
by additional subscripts (1) and (2). Thuir determination, as shown above,
is reduced for each particular (s) to the integration of equations of torsion
and plane strain problems. This implles that for each {s) the quantities
contain sufficient number of arbitrary constants to fulfill all three bound-
ary conditions formulated by equalities (6.5) through (6.7). However, only
damped solutions are taken into consideration in the auxiliary iteration
process, and hence the damping conditions (5.11) and (5.13) (for the skew-
symmetric problem) or (5.12) and (5.1%) (for the symmetric problem) must be
fulfilled. These conditions are independent of the variable ( , and there-
fore the arbitrary constants of the basic iteration process can be used in
their fulfillment.

For each (s) in the aynnntric or lkaw;;¥u-ctric case the oonstruction of
quantities @, 0%, 6.9, u.®, us®, , oontained in the conditiocns
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(6.5) through (6.7) reduces to the integration of equations of the problems
of plate bending (in the skew-symmetric case) or generalized plane stress
(Ain the symmetric case). This furnishes a sufficlent number of arbitrary
constants for the fulfilment of all damping conditions.

Thus, the formal count indicates that the basic iteration process together
with the auxiliary process give exactly the number of arbitrary constants
required for the fulfilment of boundary conditions (6.5) through (6.7) and
conditions of damping (5.11) through (5.14). A more detailed analysis of
these conditions would take too much space. Such analysis was carried out
in (1] for the problem of bending of a plate referred to a Cartesian coordi-
nate system; 1t has shown that the procedure of fulfllment of boundary con-
ditions has recurrent character.
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