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This paper deals with the methods of constructing an approxi~te theory of 
thin elastic plates without using the assumptions of the type of Kirchhoff's 
hypothesis. Until recently, the only method of solution of this problem 
was one based on the application of power series or series arranged in Legen- 
dre polynomials. Lately, however, some papers have appeared in which the 
same purpose is achieved by means of asymptotic integration of the equations 
of the theory of elasticity. In the present study the properties of these 
methods are discussed and the equations, which arise in the application of 
the asymptotic method to the problem of general deformation of a thin plate 
whose middle plane is referred to an arbitrary orthogonal system of curvi- 
linear coordinates, are derived. 

I. We refer the middle plane of a plate to an orthogonal system of cur- 

vllinear coordinates a , 8 and assume that the y-coordlnate is perpendi- 

cular to the middle plane. Then the differential equations of the three- 

dimensional problem of the theory of elasticity will have the form 

0~,~ 0~t ~ 0~v  0 In H~ 0 In H,z 

0~,z Y 0 ~ v  0~.,c, t 0 In HI3 0 In H a H ~ + H ~ + ~ - - H ~  o~ , ~ , y - - H ~ T  ~Y=0 
(Ou~ 01nH,~ ) 

E H~ ~ - -  H~ ~ ut3 = ~ - -  ~ (~t~t3 + ~YY) (~) 

ow (1.t) 

/ Ou~ Ou~ 0 In Ht3 0 In H~ ) 

/ aW 
E~H~,~-~+- -y~)  = 2 0  +v)~.y ,~,) 

Here o',.(a, o',z8, or, y, o'8R., o'~v, o'yv are components of the stress tensor, 
u=. u~, Ware 6omponen~s of the displacement vector, ~H~, H~ are Lam4's 
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parameters, E , ~ are, respectively, the modulus of elasticity and Pois- 
son's ratio. The symbol (aB) here and in what follows indicates that there 
exists the second relation which is obtained from the given one by the inter- 
change of the indices a and B • 

Assuming that the plate is loaded in an arbitrary manner on the upper and 

the lower plane,we have the conditions on the surfaces y -+ h 

o~¥ ==: a (a ,  ~ ) ,  (Y,v = h-lc~ (a,  ~) (~,~) for ~" = h 
(1.2) 

ovv  - -  b (a, ~) ,  c;~.f = h - l d ~  (a,  [J) ¢~,t3) tot 7 - -  h 

The conditions on the side surfaces of the plate will be formulated later. 

The state of stress of the plate can be represented as a sum of the sym- 

metric and the skew-symmetric states of stress. 

The symmetric state of stress is defined as one satisfying the conditions 
1 ff.~.~ = ~- q (a, ~), (L,.¢ - -  ~ -~ h - lqa  ((Z, ~J) (a~) for ~" = :[: h ( i . 3 )  

and such that 

(Yaa, ff~, ff~, (I~v, Us, U~ are even functions, 

Ga~, U~'c, W are odd functions (1.4) 

with respect to ¥ 

The ske~:-symmetric state of stress is defined as one satisfyir~ the con- 

ditions 
1 (a,  ~) (%.~ = -~h-lp~, ((z, ~) (,~, for T =  : ~ h  ( t . 5 )  u-~-f = _____ T P  

and such that 

Oar, OBv, W are even functions, 

ff~, ffa~, ff~, ffYv, Us, /~ are odd functions (i.6) 

with respect to y . 

It is assumed that 

p : a - - b ,  q =  a + b ,  q , ~ : c ~ - - d , ,  (¢,t3), p , .  = c,. + d , ~  ~,,~ 

The skew-symmetrlc state of stress corresponds to bending of the plate, 
in which p is the intensity of the surface lead, Pc, P~ are the intensi- 
ties of the surface moments; the symmetr$c state of stress corresponds to 
the state of generalized plane stress in which qg, q~ are the intensities 
of loads parallel to the middle plane, and also to the state of comoresslon 
of the plate in which q is the intensity of the compression load. 

2. Let us write down the solution of the system (1.1) in the form 

S S S 
oij h-q ~, b~,_ Cs) h-q = .~ ~,~ , u~ = ~ h'u,( ' ) ,  W = h , q E  h S W  (') ( 2 . i )  

S = O  8 ~ 0  $ ~ 0  

( i  = a ,  13, T; i = ~, 13, "r; k = ~, ~) 

(where q are integers, which ar~ different for different stresses and dis- 

placements) and let us construct the iteration processes for the successive 

determination of coefficients of the above expansions. 

The first of these iteration processes consists in the followi~: a sub- 

stitution of variables is made in (l.l) 
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7 = h~ (2.2) 
the expansions ~2.1) are then introduced into the obtained system, in which 

is selected as follows: 

for the symmetric problem 

q ----- 2 for %=, %~, c~ ,  q = t for %y, ¢~.¢ 

q = 0  for %~, q = 2  for -~; %,  q----- i ior W (2.3) 

for the skew-symmetric problem 

q - - - - 2  for %~, ,%~,  z ~ ,  q =  I for %v'  ~ , :  
(2 .4)  

q = 0  for %~, q = 2 fo, Ua, Up. q = 3  [or W 

and in each equation thus obtained the coefficients of all powers of h are 

set equal to zero, startlr~ with the lowest. This leads to the following 

sequences of systems of equations for the coefficients of the expansion (2.1) 

(a~) 

0¢~(~ ) 06 (s) 0 o ~ )  0 In H~ 0 In He, 
H ~ - ~  + H ~  ~ +  o: n~ - - ~  ( : 2 ) -  ~;~)) - 2H~ T :A') = ° 

H .  O%('¢s) H Oc~(~) 0%?) 0 In Ho 0 In H~ 
+ ~ ~ + o~ Ha ~'oa %(')~ - -  H~ ~ %(.,') = 0 (2.5) 

0 In H a \ 
°"2)o= H~ T = %T ~,(¢-')1 E Ha us(')) -- v(%h') + (-~) 

OW (s) 
E ~ - :  = ~ ( ¢ ~ -  ~ ( ~ )  + ~ ) )  

• auo (') 8 In H~ a In H= '~ (n. ~ + H~ °'2,-~-~ + n ~ - . - ~  u,(.) + ~ , - - ~  ,,~(.,) = 2 (~ + .1 ~,~., 

0%(')~ 2 ( i  + - (~)  OW (c) 
E H~, - - 8 U -  + o~ ] = ~'~'" %~  

(~-~) 

Here s is the number of a term in the expansion, and the numbers a ,  b 

and o are related to e as follows: 

a = 8 - -  2, b = s, ¢ = s - -  2 f o r  the symmetric problem (2.6)  

a = s-- 4, b = s-- 2, c ~--- @ for the skew-sym~etrlc problem (2.7) 
In (2.5') and everywhere in what follows the quantities wlth negative indi- 

ces are assumed to be equal to zero. 

In Equations (2.5), (2.6) and (2.7) the integration with respect to the 

variable ~ is easily carried out. The result obtained can be written down 

as: for the symmetric problem 

W (') = 0a (') + W *(°), uJ')  = va(') + u J(')  ~ )  

%,~) = w,~) + ~(~') (=a), ~=~') = w.(~ °) + ~'~'! (2.8) 

~ 2  ) = ~a?'  + ~:(~) ('"). ~ (,,.) = s(¢) + ; ,, 
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for the skew-symmetrlc problem 

W (~) ==: w (s) -t- W "('~), u~ ~ ...... ~v~ (~) ~- u~ *(~) (~o) 

(s) == ~ (s) 4- o .(s) (2.9) 

~ 2  ) = s , T  + ; ~ 2  ) + :;(~)(~), 

In these formulas the functions of a and fl 

~(~), ~(5), ~(~), ~T, ~,(') ~'~ .  ~?), -~- (',.~ (5) s2), s/~), 
are connected by differential relations which have t h e  form 

for the symmetric problem 

E T ~ )  (=a), ~:~) 
"[a~) -- 1 - -  V ~ z  

Tv(~s) _-- Tv(v s), 

,(s) 

2 (1 + v) 

for the skew-symmetric problem 

~2) ~ T2)  . (5) E TA% 
= i ~ - ~  (~'~)' ~:z = 2 (i + v-----5 

S~I$ 

(2.10) 

I T=y t~) 
~Z)= r 

ow(s ) (2.1 I )  
~)_I T..~) ' v(~) H ~  0~ 

O In tt~ St3v(s) ] 

I n  Formulas (1~.10) ~nd ( 2 . 1 1 )  

T (~) = H. or'(5) --H~ O IInH. v~(') + vH~ 0v~(5)--vH. 0 In4/~ v.(5 ) (-~) 

0 In ~ a  T ~  s) ---- H a  0%(s) + H~ Ov~(~) + H~ 0 In H~ vt~(s) + Hf~ v a  (5) 

T ~  ) ---- -- H a  - -  

(2.12) 

0T (s) . 0 In H~ (~t~)  - -  1:0(8)) ._~ 2H~ 0 In H a o,o~ 2) - H~ ~ + --~ ~ ~ ~2 ) ~-~, 

T ~  ) --H= 0~'(~) --Ho O~(~) + H .  olnH~ T~,~)-~-H~ OlnH. (~) 

The q u a n t i t i e s  marked by a s t e r i s k s  i n  ( 2 . 8 )  and ( 2 . 9 )  a r e  d e f i n e d  by t h e  

f o l l o w i n g  r e l a t i o n s  : 
f o r  the symmetric problem 

i f. 014 r(8-~) (8_,)Id~ (a~) Eu *(~)-=--- LEH,, o~ - - 2 ( t  + v ) ~ . ~  
o 

Oua*(s) 0 l n H  a , .  0u *(s) 
E H .  H~ + vH~ 

0 In Ht~ * -I 
-- vH. ~ u (')J (-~) 

(2.13) 
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2.13 (cont.) 

. E I 0ut~*(s) 0ua*(s) Olnt-l~u(~*(~) -~- H~OlnH~ 1 
~;(~)-- 2 ( l ~ v )  H:~ ~ + H ~  ~ + H a  o~ ~ u ~  *(~) 

~ I  0%*(s) 0%~(s) OinHo 

n 

0 In Hc~ ,(s)] 

~ I - *(s) O ln H a ; *(~) I 0~a~ ~ H~ 0%~'(~> 01nHt~ <5=v(s > H~ Z ~  (') d~ 

o 
v. 

[o~ -- v (aa~ ') -+- G¢~(~))] d~ EW*(S) ~- I _ (8-s) 

o 

for the skew-symmetric problem 

EW'(') = + I [z~(~8-4) - -  v ( z ~  ~) 4, z~8 ~))1 d~ (2.14) 
o 

Eua,(s) = _  EfH~°W'(')d:~ + 2 (1 + v) I ~a~-') d: (a~) 
o o 

E [ Ou~ *(s) 0 In H a • Ou~ *(s) 
~a*Js) -- I -- ~ k H~ ~ H~ ~ u~ (8) + vH~ o~ 

0 In H~ ] v _ (s-2) 

. J  

• . , , , , • . . . . .  , • , • • • • , • • • • * • • • • 

(the expressions for ~a; (s), ~a; (8), ~,;(s) are nat written down; they are the 

same for the skew-symmetrlc problem as for the symmetric). 

Formulas (2.13) and (2.1~) are of recurrent character and allow the deter- 

mlnatlon of quantities with asterisks associated with the approximation (s), 

without solving any equations, if all the quantities associated with the 

approximations (0), (i), (2) .... (e- i) are known. 

5. We w i l l  assume t h a t  t h e  f u n c t i o n s  a, b, ca, ¢~, da, d~ in (1.2) a r e  
i n d e p e n d e n t  o f  h • (A g e n e r a l i z a t i o n  f o r  t h e  case  i n  which  t h e s e  q u a n t i t i e s  
a r e  po lynomAals  o f  i n t e g r a l  o r  f r a c t i o n a l  powers of  h i s  made i n  an  obv ious  
manner, with the help of the superpositlon principle). With this assumption, 

the bounds~j conditions (1.3) snd (1.5) imposed on stresses can be replaced 

by sequences of @ondltlons imposed on the coefficients of the expansions 

(2.1) 
f o r  t h e  symmet r i c  ca se  

G.~o) 1 (o) , 6 {o) 1 -yq, ~a~ ---- ~+-gqa, ~ = ~-Yq~ 
fo, . ~ = + ~  (3A) 

(,) (L,~) = (~(t) 0 (t > o) 
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for the skew-sym~etrlc case 

] _ I o(vo)_ i 

a',!,°) :-- ~- T P, ~,~o) _ T P~, = "T Pa (or ~ = + i (3 .2)  

('~ o~!~ ) o ~  ) 0 ( t > o )  

Substituting (2.8) and (2.9) into (3.1) and (3.2) and bearing in mind that 

for s = 0 and s - I the quantities marred by asterisks are equal to zero, 

which follows from (2.13) and (2.1~), we obtain 

for the symmetric problem 

%(') (~t~), S~(~')+ ~ - (') --  ~ q(') (3.3) " r~  ) : T~yy -- -f 

where 

where 

q(O~ = q, q(X) = O, q(r> = _ _  2o /y(r) I~=1 

qa(O) = q, ,  qa(*) = O, qa (r) = - -  2Oay*(r)1~=1 

( r > t )  
for the  skew-syamertic problem 

S i P  + TJ~ ̀) = V~pJ ̀ ) 

( r> t )  

(aa) 

(.a), s ~ ?  ) + ~J@ = ~/~( ' )  

p(') = - -  2 o ~  (') I==1 
(r > i) 

p=(') = - -  2%~(')1~.=, (~,a) 

(3.4) 

(3.5) 

p(O) -- p ,  pn)  = O, 

p(O) := p~, p ( ' )  = 0, (3.6) 

Equalities (2.10), (2.12) and (3.3) from a system of ten equatlor,,s wlth 

the unknowns 

T (') ~(~'), ~!]), ~y(y'), Sy(Y ') (3.7) va (8), vt3 (s), w(S), T~(~ s), "t~ s), a a ,  

By means of the last two equalities (2.10), (2.12) and equalities (3.3) 

a n d  ( 3 . 4 )  t h e  q u a n t i t i e s  

s.,!? (3.8) 
are expressed in terms of 

q, qw qa, °Y;!°[~=l,  °,~y(°l~,=l, %;(')]~=1 

and the  q u a n t i t y  W (*) is expressed  i n  terms of  ~) and Ta~ s~ or i n  terms 
of ~a (*) and Ya (s) which follows from (2.10), (2.12). 

Substituting values thus obtained (3.8) into the first three equal~ties 

( 2 . 1 0 )  and ( 2 . 1 2 ) ,  we a r r i v e  a t  a s y s t e m  o f  f i v e  e q u a t i o n s  w i t h  the  
_ (s) ~.a~s', Ta~ s) ~'a (s), Va($), ~aa  , 

o~,~) a~ ") o m H a a m H ,  c~, ) _ ~ (,) 
/ / , ,  ~ + Ha ~ H,, ~ (~,('~-- ~a~ °)) -- 2/'/0 ~ = 2 " "  

(aS) 

¢ (s, E F t4 0% (') a ln11~, Ov (') a l n H  a ] 
"' - - ~ L " "  aa Ha--i---3 va(') + vHa% -- vH, ~ v.(') (3,9) 

E FH Ova(=) ~ O I n H  a a l a H .  ] 
"~"[" = 2 0 + v---~ L ~ oa + Ht~ + H~, ~ vy  s) + Ha ~ vJ') 
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F o r  e a c h  ( e )  t h i s  s y s t e m  i s  e q u i v a l e n t  t o  t h e  nonhomoEeneous  s y s t e m  o f  

d i f f e r e n t i a l  e q u a t i o n s  o f  t h e  E e n e r a l i z e d  p l a n e  s ~ r e s s  p r o b l e m .  

The f i r s t  e q u a l i t y  ( 3 . 9 )  r e p r e s e n t s  t h e  e q u i l i b r i u m  e q u a t i o n s  and  t h e  l a s t  
two a r e  t h e  r e l a t i o n s  o f  e l a s t i c i t y .  The c o n s t a n t  t e r m s  on  t h e  r i g h t l h a n d  
s i d e s  o f  t h e  e q u i l i b r i u m  e q u a t i o n s  c a n  be  l o o k e d  upon  a s  c o m p o n e n t s  ?~  a c e r -  
t a S n  h y p o t h e t i c a l  t a n g e n t i a l  l o a d i n g .  F o r  • - 0 t h e  q u a n t i t i e s  q~ and  
.As)  c o i n c i d e  w i t h  t h e  c o m p o n e n t s  q~, "q~; o f  t h e  l o a d  a c t u a l l y  a p p l i e d ;  f o r  
,'~- ±" q-- ~-___ ~ (I)__ 0 ~, and for • • I these quantities are defined as oer 
rain differential operators of qa, q~. In par~$cular, it is easily verified 
that if qa~ q~ have a potential function V(0;, then the potential function 
V (~) for qa (~), q(Z) is Eiven l~y Formula 

4- 3v AV (°) ( A is the Laplace operator) (3.10) 
V(Z) = 12 (1 -- v) 

For the skew-symmegrlc Problem Equations (2.11), (2.12) and (3.5) form a 

system of twelve equations with the ~u-tknown8 

~,(.) ~(.) ~(~) ~ )  ,~ ' )  M ') ~ (.) ~ . )  ~ #  o (.) 
By means of the last two equations (2.11) and equalities (2.12), (3.5), 

(3.6) the quantities 
&~',, &;'), s d  '), M ') (a.t2) 

c a n  be  e x p r e s s e d  i n  t e r m s  o f  

and ~=1~) and ~(s) in terms of W (~). 

Substltutlr~ these results into the flrst four equalities (2.11) we obtain 

a system of six equations with the unknowns 

~.g', ~.~'~, ~') ,  ~('), ~') ,  w (') (a.13) 

It has the form 

E [ o / ~(')~ Ol .  H.  0.,(') (3 .t4)  
Ta~ 8) 

- - r = - ~  ~.~'. ~ I,~" -arJ -*~" T ~'~-a~--~ + 
I Ow(~)\ _ 0 1 n H ~  . Ow(~)~ + , H ,  LH, j - ,o, ,  

• , O In H~ , ,  0w{') g O In H e H ~('} ] 
+ " - - N - - a ~ - ~  - +  ~ T  "-~-J 

0%~) 0 ,  (') 0 In H,  ( ,~ . )  _ ~ . ) )  2 H ,  0 In H.  (.) 2~,~. ) , , , )  
H~ ~ + H~ i ~  _ H,~ ~ - -  ~ ~,~ = - -  

[ o (~'."~ ,I, ') 

This system is equivalent to the system of differential equations of the 
classlcal theory of plate bendln~. Namely, if the followln~ new quantities 
are introduced by means of For~nulas 
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-1  

÷1 
H ~ )  = ~z h~(8) + h8 I go~* (8) dg (3. ~ 5) 

÷l 

- - [  

H~s~he  f t r a t , f t v e  q u a n t i t i e s  i n  (3.13) a re  expressed  i n  terms of M~ s), M~ (8), 
,NjSJ ,  N~ ~ and s u b s t i t u t e d  i n t o  e q u a t i o n s  (3 .1# ) ,  then  we o b t a i n  the  

u sua l  r e l a t i o n s  of the p l a t e  bergiiDg theo ry  I n  which the  q u ~ t t t l e e  ( S , ~  
tame the r o l e  of moments add ehear l~g  fo rce s  i n  the e t h  a p p r o x i ~ t i o n  ( ) 

I t  has been shown i n  [2] ( f o r  the c y l i n d r i c a l  coo rd ina t e  sys tem) ,  t h a t  
a l l  of  these  .quan t i tAes  can be expressed  I n  terms of the  f u n c t i o n  
wo ~) --~ hs-sw(s~, which s a t i s f i e s  Equa t ion  

p(8) (D 2Eha 5Awo (8) ) (3.16) 
D 3 (1 - -  v 2) / 

Here P(') £s expressed  i n  terme of p, p~, ps. I n  p a r t i c u l a r  

P ( ' ) - -  30 ( th ' - -v ' )  { - -  Ap v) +H~H~ ( ) ] }  - 3 ( 8  sv) + ( 4 +  a ~ H ~ H o ° l ~ - ) o  P~ 
C o a~ \H~ J ~ 

~or p~p~-- - - -O we have 

p(0) = p, p(1) : 0 ' p(2) _ ( 8 - - S V ) h  a 
i0  (t - -  v) Ap (3.t8) 

N o t e . ,  Xt can be seen f z , ~ m ~ l ~ a s  (3 .10) ,  (3 .17) ,  (3 .18) ,  (3.%), 
3 .6 ) ,  (2.~3) and (2.1~) t ~ t  J~ ~ oomt ,mot toa  o f  aa ~ o ~ J ~ m t e  theoz~ 

of beP~ADg arid e z t e ~ t o a l  o f  & ~  I t  t s l ~ e d  t ~ t  t he  e ~ f ~ e  loads  
have con t inuous  d e r i v a t £ v e s  of  ~a~£1eAe~l~  h ~ h  o r d e r .  I t  should  be p o i n t e d  
out  t h a t  the reqtL~e~e~t  Or d ~ a r e ~ l £ ~ y  of  load  ~e no t  a e h o r t o o ~ t ~  
of  the  method under  c o n ~ £ d e r a t ~ ,  bu t  a~e~eAe@t ionof  the  p l~miea l  n a t u r e  
of  the  problem. ~ s  can e a s i l y  be ve r i fAed  wi th  the  example Of be~dAmg of  
a o£roula~ p l a t e  r e f e r r e d  to  p o l ~  c o o r d i n a t e s  and a@ted upon by a mormal 
load of i n t e n s i t y  P " ~o cos ae 

At the  c e n t e r  of the  p l a t e  the f u n c t i o n  p becomes n o n d £ f f e r e n t ~ b l e  and 
the  method disotmeed h ~ e  c ~ t r ~ t  be app~£~d. ~h~s £s e x~ l a i ne d  by the  f a c t  
t h a t  a t  the  p l a t e  oenter  i n  t h l e  t ime ~ ata~te of  s t ress i s  e s s e n t i a l l y  
th~ee-dimerm£o~al  and no theor~  based on the  a s e u ~ t i o n  of  smal l  p l a t e  t h i c k -  
ness is capable of  deecrlblA~ it. 

~. In [I] the Iteration process presented above was ter~ basic. Xt is 
desisned for the conatructAon of the basic states of stress, deeply.penetra- 
ting inside the plate. ~a-e£ore, in the foz~mlatlonof 3~uatlons ~2~) it 
was aesmaed t h a t  the streaaaaa~KI d A a p l a c e m e n t s d o  no t  v a r y  too r a p i d l y  a long  
a ,  ~, and the  f a c t  t h a t  i n  a t h i n  p l a t e  the s t r e s s e s  and d i s p l a c ~ e ~ t s  must 
va ry  r~p£d ly  w i th  .¥ was t aken  ~n~o c o n s i d e r a t i o n  by means of  the  s u b s t i t u -  
t i o n  of v a r i a b l e s  ( ~ . ~ ) .  

*) Xn [lJ, fo r  the  problem of  bend ing  of a p l a t e ,  the s u b s t i t u t i o n  (3.1D) 
was c a r r i e d  out I n  C a r t e s i a n  c o o r d i n a t e s , a n d  q u a n t i t i e s  wi th  a s t e r i s k s  were 
e r r o n e o u s l y  l e f t  out  of  a ccoun t .  
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Formulas (2.8), (2.9), (2.13), (2.14) show that the basic iteration pro- 
cess determines such states of stress of the plate in which the stresses and 
displacements with respect to the variable ~ , i.e. along the thickness, 
vary according to a polynomial law, the degree of the polynomials increasing 
unboundedly with the increase of the number of approximations. As the number 
of approximations increases without limits, the states of stress will be 
obtaine~ in which stresses and displacements are expressed by power series 
in C • Therefore, using a sufficient number of approximations and taking 
advantage of the arbitrary constants of integration of equations (3.9) and 
(3.14), one can formally satisfy the boundary conditions 6n the side surfaces 
of the plate with any degree of accuracy. 

This constitutes one of the possible ways of constructing an approximate 
theory of plates; it represents one of the variants of the power series 
method, i.e. a method which has been used repeatedly (see, for instance, 
[3 to 6], and which is based on the expansion of the unknown quantities into 
power series in the direction of the plate thickness. This method can be 
applied for any thickness of the plate (including the large one), although 
it should be noted that the difficulties associated with the investigation 
of the character of convergence of corresponding series have do far not been 
overcome. However, if one speaks of thin plates only, the power series 
method has a drawback the nature of which will become apparent below. 

From the above discussion it follows that for the equations of the theory 
of elasticity the process of constructing integrals which are expressed in 
terms of power series in one of the variables can be arranged in such a man- 
ner that it will have iterational character, and, at all stages, quantities 
of the same order of magnitude (and independent of h ) will be taken into 
account. This offers obvious advantages, especially if one bears in mind 
that at each stage the well known equations of the problems of plate bending 
and generalized plane stress have to be integrated. However, all these 
advantages are almost completely lost when the boundary conditions on the 
slde surfaces of the plate have to be satisfied: to carry that operation 
out one has to construct a certain number of approximations in a general 
form, write down the corresponding expressions for stresses or displacements, 
and state the requirement that those quantities should, in one sense or 
another, approximately satisfy the boundary conditions. Thus, in the variant 
of the power series method discussed here the arbitrary constants of inte- 
gration have to be determined at once, and not separately for each approxi- 
mation, and besides, the computations will now contain quantities proportional 
to various powers of h • In other variants of the power series method its 
shortcomings remain essentially the same and are manifested by the fact that 
With the increase of the number of approximations the order of the corres- 
pondlng equations increases, the coefficients of the equations depend on ~, 
and for small values of h. are substantially different from each other in 
absolute value. 

The property of the power series method described above is not accidental 
and cannot be explained by an unfortunate arrangement of the calculations. 
In the classical plate theory only such characteristics of edge force action 
as tractions and moments are taken into consideration for the fulfillment of 
boundary conditions on the side surfaces. The improved accuracy in satisfy- 
ing the boundary conditions is equivalent to taking into account the self- 
equilibrated edge influences (polymoments), and this, according to St.Vensat~ 
principle, leads to the appearance of rapidly damped states of stress near 
the edges. 

If the equations of an approximate plate theory are found with sufficient 
accuracy and have the purpose of describing all the elastic phenomena, they 
must contain the corresponding rapidly damped integrals which are known in 
the theory of asymptotic integration as the boundary layer [7 and 8]. Such 
integrals are precisely the ones which have equations obtained by the power 
series method, i.e. equations of sufficiently high order whose coefficients 
contain a small parameter. 

The a b o v e  c o n s i d e r a t i o n s  n a t u r a l l y  l e a d  t o  t h e  i d e a  o f  d e v o t i n g  a s e p a -  
r a t e  i n v e s t i g a t i o n  t o  r a p i d l y  damped s t a t e s  o f  s t r e s s  and w o r k i n g o u t f o r t h e m  
s u c h  i t e r a t i o n  p r o c e s s e s  w h i c h  a r e  b e t t e r  a d a p t e d  f o r  t h e  p u r p o s e  t h a n  t h e  
b a s i s  i t e r a t i o n  p r o c e s s .  The method i n  w h l c h  t h i s  i d e a  i s  d e v e l o p e d  was 
c o n s i d e r e d  Ln [ 1 ]  and [ 9  t o  15]  and can  be  c a l l e d  a s y m p t o t i c .  I n  t h e  p r e s e n t  
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study an attxillary lteratlon process ls formtLlated for the determination ,~f 
rapldly damped states of stress in a plate subjected to bending and exten- 
sion, and it Is shown that if the state of stress in a plate is sought as a 
sum of states of stress whlch are obtained by means of the basic and the 
auxiliary processes, then not orLly the process of integration of equations, 
but also the process of imposing the boundary cor~itlons on the slde surfaces 
will have the Iterational character. 

l~ately some papers have appeared [16 and 17] in whlch the approxl~te ben" 
dlng theory of plates is constructed by means of the symbolic method of Lur'e 
[18]. L~ thls method equations of infinitely high order are obtained, and 
In that sense It borders on the power serles method. It has been shown in 
[ 16] that the results arrived at by this method are qulte close to those 
obtained by the asymptotic method. 

N o t e . The differential equations whlch arise in the power series 
method can be solved by asymptotic integration as equations containing a 
small parameter. In the process, the rapidly da~d solutions are automa- 
tically singled out, a~ the difference between the asymptotic method and 
that of the power series becomes inessentlal. ~'nen the equations arising in 
the power series method loose their independent significance ~d turn into 
an auy, tllary means for obtalnlng results to which the asymptotic method leads 
directly. 

5. l~t us now describe the attxlllary iteration process, assu~ng that it 

ls to be used in constructing states of stress rapidly danced in the direc- 

tlon away from the llne 
(Z ~---C~ 0 

which is supposed to coincide wlth the edge of the plate. 

This process consists in the following: in (l.l) we n~ke a substitution 

of  v a r i a b l e s  a = h_ 1 0 0 : h_ 1 0 (5.1_) 

and introduce the expansions (2.1) into the transformed system, choosing q 

such t h a t  q == r for 6==, ~=/3, 6{3fl, ~=x' 6{3x, 6vx 

q = r - -  | for u=, u~, W (5.2) 

( r  is an undetermJLned number, so far), then we set the coefficients at all 

powers of h equal to zero, starting with the lowest one. This leads to 

the following sequence of equations for the coefficients of expansion (2.1): 

Ou I s )  0uJS-1) 
E ~ 2 (1 + v) z=~ ')  = - -  EH~ ~ -4- Ek~uB (°-1~ ( 5 . 3 )  

Ou (s) OW(S-1) 
Z~'~ - - 2 ( l + v ) ~ t ~  ) o ~  = - -  EH~ -~ 

a~.~ o~,~"' _ , ,_ , , .  a~.~'~ o~' )  no._ . 
O~ + ---K- = ~" " o~ + ~ = (5.4) 

,i)W (s) 
nW=°""~'~ I,~,,T - -  v (~0~" + ~,7 ~)l-, E W = [ o #  - -  v (o,.~ ~ + o~'~11 

+ ~ 1 - -  2 ( 1 + ~ ) o , , ~  ~ =  0 k o~ 
Ou (s-a) 

o . i , "  - (. . : : '  + ...;") = + e k , . . J ' - "  
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The designations used in Equations (5.3) and (5.4) are 

~e (='~ -~ ) 
~I:~(`-1) = - -  H ~  ~ - -  k~ ( ~ 1 )  __ (~s;1)) (5.5) 

also taken into account are formulas for the curvatures of the coordinate 

lines 0 In H= 0 In H B 
k= = HIS ~ ,  k/t = - -  H,,  0~ 

Mo~, ~has been assumed that k a :0. The latter assumption means that, 
for the purpose of oonstructlng rapidly damped states of stress, the coordinate 
system a,8,y in which the basic state cf stress was constructed has been 
replaced by a new coordinate system ~,8,C in which the ~-llnes ares~ght. 
The ~,8,C coordinate system should be used only near the edge a'~o. 

This is possible, in general, but it should be pointed out that the edge 
corner points (whether rounded off or not) should be excluded from conslde- 
ratlon. 

Equations (5;3) and (5.4) from a reccurence system. From It, quantities 
with the index ~8) are successively determined in terms of quantities with 
the index (s -- i). For e , O, when (e -- I) quantities vanish,' the homoge- 
neous equations well Icnown in the theory of elasticity are obtained. Equa- 
lities (5.3) represent the equations of torsion of bars (with respect to 
8-axls), and equalities (5.4) are the equations of the plane strain problem 
(in the ~C plane). For e > 0 (when (e -- I) quantities should be regarded 
as known) the equations remain the same, but become nonhomogeneous. 

In what follows it will be convenient to represent the coefficients of 
the expansions (2.1) in the form 

oi~')=" (') ' ~(') uk(') = u (') -~, (') W (') vi~ (1) ,-v ~{~ (2)' k (I) "k (2)' = W(1/s) ~- W(2/$) 

definlr~ the quantities with the additional indices (1) and (2) in the fol- 
lowing way : 

in the zero approximation 

o ( o )  = .  (o) = ~ (o) = o(o) = (o). = wa~O)  ~_ 0 (5 .6)  
== (*) v~ (I) =~ (I) Y~ (x) u= (,~ 

o (o) o ( o )  u ( O )  • F (1), p7 (1), ~ (1) are defined from the homogeneous 
system (5.3) 

o ~o, = %~o~,> = ,~o~ = o (5 .7 )  

o (o) . (o) o 2  ~ (o) u (o~ W (o) == (£)',~ISIS (z)' (2)' ~ (s)' = (~), - - (2 )  a r e  d e t e r m i n e d  f r o m  t h e  h o m o g e n e o u s  
system ~5.~). 

In the sth approximation (s > O) the quantities with additional indices 
(I) and (2) must satisfy the nonhomogeneous system (5.3),(5.4) in which the 
quantities on the rlght-hand sides have indices (I) or (2), respectively. 

N o t e . Quantities with additional indices (I) and (2) correspond to 
those which in [i] were determined By means of the first and second variants 
of ~ne auxiliary iteration process. 

We will require that solutions of the systems (5.3) and (5.4) satlffy 

the conditions 

(s) ~ (s) = 0 (~,~) ( 5 . 8 )  

for ~ = Jr i 
(s) G (s) 
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Then for the state of stress which represents a sum of the sta~es or stress 

determined by the basic sund the auxiliary iteration processes, conditions 

(1.3) or (1.5) will be satldfled. 

In the formulation of the auxiliary iteration process the substitution of 

variables (5.1) was used and it was assumed that the variation of stresses 

and displacements along ~,8,~ is not too large. This is equivalent to the 

assumption that alone a and y stresses and displacements do have large 

variation. Following the way outlined in Section 4, care should be taken to 

insure that rapid variability alone a would imply rapid damping of the 

unknown quantities, i.e. conditions of damping should be imposed. 

ConslderIl%E this problem, we assume that the variable ~ is determined 

from (5.1) by Formula 
x 

1 f d a  

o 

Then the edge a = e o will be defined b y  Equation ~ = 0 , and Equations 

(5.3) and (5.4) will have to be integrated in the half-strlp 

o >.> ~ ~ ~ ,  - - l < ~ + l  (5.9) 

As pointed out above, here the systems (5.3) and (5.4) have a definite 

pgysical meaning: they represent the nonhomogeneous equations of the prob- 

lems of torsion and plane strain. 

Conditions (5.8), i.e. stress-free conditions must be satisfied on the 

straight lines C * 1 . For the damped solutions when ~ = -- ~ the stresses 

and displacements vanish. Thus, the half-strlp (5.9) will be acted upon only 

by 
a) edge forces 

[~ (~) ÷ ~  (~) ] r~ (~) + o  (~) l (5 . t0)  

distributed along the straight llne ~ = 0 ; 

b) mass forces whose components R~, R~, ]q~ are determined from 

Formulas (5.5). 

For s = 0 components of forces (5.5) will vanish and, due to St.Venant's 

principle, conditions of damping will be the requirements of equilibrium of 

forces (5.10), i.e. if (5.6) and (5.7) are taken into account, this will 

furnish the equalities 

"; 1 + I  

I : ° ' ° ' '  ..... o, t o  (o, I , - o < - -  o a = ( 2 )  i < = o  = . = . ~ ( ~ )  ~ - -  

- 1  --1 

I + 1  

- 1  - 1  

(5.1t)  

(5. t2)  

Suppose, furthermore, that there exist (8 -- I) approXimations, determined 

from Equations (5.5) and (5.4), which satisfy the conditions of damping. 
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Then ~-I),~?-i), ~-i) will not vanish, but the corresponding load will be 

localized in a narrow zone adjacent to the straight llne ~ ~ 0 . 

The conditions of existence of damped solutions for the 8th approximation 

wilI be the requirements 

+I 0 +I 

(~ (s}. 

-1 -CO - 1  

+1  

I [a(8} + a ( 8 )  i d~-=  
a Y ( l )  =Y (2 )  ~ = 0  

- 1  

+ 1  

I ' '~==('(8) + %~}~)]a=od ~ = 
- 1  

+1  

I [a (8) -k-a  (8) ] d ~ =  

- 1  

which express the state of equilibrium of 

the h a l f - s t r l p .  

[;B~(8-*) - -  ~B;(o-*)] d~ 

0 +1  

--CO --1 

0 + 1  

(5.13) 

--OO --i 
o +l (5 .14)  

f d~I R~(8-1)d~ 
--CO --1 

mass and edge forces acting upon 

For the symmetric problem, due to (1.4) equalities (5.11) and (5.13) 

become identities, so that (5.12)and (5.14) will serve as the conditions of 

damping. 

For the skew-symmetrlc problem equalities (5.11) and (5.13) serve as con- 

ditions of damping, while (5.12) and (5.14) become identities. 

~. We now turn to the question of procedure in the fulfillment of bound- 

ary conditions on the side surfaces of the plate in terms of arbitrary con- 

stants of the basic and the auxiliary iteration processes. For the sake of 

concreteness let us consider the following three variants of the boundary 

conditions for a = ao (g = O) 

6== = O, a~a = O, 6=~ = 0 (6.1) 

~== = O, ~=~ = O, W = 0 (6 .2 )  

u= = O, u~ = O, W = 0 (6.3)  

(they correspond to the free, hinge supported and rigidly built-ln edges, 

respectively) and let us fulfill them, assuming that the total state of 

stress is composed of the basic state of stress determined by the basi~ ite- 

ration process, and of the boundary state of stress determined by the auxili- 

ary iteration process. Let 

S s 
a== = h-q' ~]  h S a ~ )  -I- h -q' ~]  h s (a(8) + a(8) 

" a a ( 1 )  = a ( ~ )  / 
8 = 0  S=O 

s s (6~4) 
a=~ = h-~' ~]  hSa"~) + h-~' ~ h8 '(a~(1)(8) + 0=~(2))(8) 

s = O  8 = 0  
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(6.4) 
g s cont. 

w = h-',, E, h'w(~l + h - q , y  h s (W(l~ ') + w(21 s~) 
S ~ O  S=~O 

By gl we understand here the volumes of ~ determined by Formulas (2.3) 

and (2.%), which correspond to the basic iteration process, and by qa -- the 

values of q determined by Formulas (5.2) which correspond to the auxiliary 

iteration process. 

The number r remains undefined in Formulas (5.2). It should be so 

chosen that the procedure of imposing the boundary condltlons would have 

recurrent character. For all three forms of boundary conditions considered, 

(6.1) throush (6.3), this purpose is achieved if we set r - 2 . Then, sub- 

stltutln8 (6.4) into (6.1) throush (6.3) and setting the coefficients at all 

powers of h on the left-hand sides of resultln8 equalities equal to zero, 

we obtain the sequences of boundary conditions for the coefficients of expan- 

slo.8 (6.U). 

For a - =o (~ " 0) they are written down as 

%(:) + z (') + ~ (') = O, %~,) + %~)~) + o (~) = 0 ,,a(1) a-(s) ~(2) 

, , - , )  + ~ (,) ÷ (j (°) = 0 (6.5) O=7 ai(1) "~(2) 

aa "={1) an(2) 

WO) ~ ur  (a) " ' a ~  ÷ W(s(~ ~ = 0 (6.6)  

us(°) ÷ u (,-1) ÷ ,, (o-~) = O, u~(') ~ u (*."~) --~ ,, (,-1) _-- 0 
a(1) --=(I)) ~(1) "~(2) 

W ( ' ) ÷  W(l{ "> + W(~ "> --  0 (6.7) 

where a = s- 2 for t:,e skew-s~etric problem, and a = s for the sym- 

metric p r o b l e m .  

~'.'.~ boundary relations (6.5) throuch (6.7) contain quantities designated 

by additional subscripts (i) and (2). Th~,ir determination, as shown above, 

is reduced for each particular (e) to the inteEration of equations of torsion 

and plane strain problems. This Implles that for each (a) the quantities 

contain sufficient number of arbitrary constants to fulfill all three bound- 

ary cond i t ions  fo r~au la t ed  by  e q u a l i t i e s  ( 6 . 5 )  t h r o u g h  (6.7). However,  o n l y  

damped s o l u t i o n s  a r e  t a k e n  I n t o  c o n s i d e r a t i o n  I n  t h e  a u x i l i a r y  I t e r a t i o n  
process, and hence the ~mqpln8 conditions (5.11)"and (5.13) (£or the skew- 

s D m e t r l c  p r o b l e m )  or ( 5 . 1 2 )  and ( 5 . 1 ~ )  ( f o r  t h e  s y a m e t r i e  p r o b l e m )  must  be 
f u l f i l l e d .  These c o a d l t l o n s  a p e  ~ d e p e n d e n t  o f  the  v a r i a b l e  C , and t h e r e -  
f o r e  t h e  a r b l t r a r ~  c o n s ~ m t s  o f  t h e  b a s i c  I t e r a t i o n  p r o c e s s  can  be u sed  i n  
their fulfillment. 

For  each  (a) i n  t h e  a y m m t r l . c  o r  ekew-m.~_metrle e a s e  t h e  commtr iae t ion  o t  
q . . . t i t i e s  o.~',  o(.'~, o~(~ `), ,.."), u~"), W ~", o o . . m ~  in t h . . o . ~ i t i o ~  
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(6.5) thrOUgh (6.7) reduces to the integration of equations of the problems 

of plate bendlng (in the skew-symmetrlc case) or generalized plane stress 

(in the symmetrlc case). Thl8 furnishes a sufficient number of arbitrary 

constants for the fulfilment of all damping conditions. 

Thus, the formal count indicates that the basic iteration process together 

with the auxiliary process give exactly the number of arbitrary constants 

required for the fulfilment of boundary conditions (6.5) through (6.7) and 

conditions of damping (5.11) through (5.1~). A more detailed analysis of 

these conditions would take too much space. Such analysis was carried out 

in [i] for the problem of bending of a plate referred to a Cartesian coordi- 

nate system; it has shown that the procedure of fulfilment of boundary con- 

ditions has recurrent character. 
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